Fresh Water Analysis

Date:	Weather Conditions:
Location:	Air Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Latitude/Longitude:	Wind Conditions
Water body:	\% Cloud Cover
Watershed:	Precipitation

Test Factor	Result	Comparison	Rank	Percent (\%) Saturation in Fresh Wate \triangle Dissolved Oxygen				
Water Temperature $\left({ }^{\circ} \mathrm{C}\right)$ (Get from stream card)			1					
Dissolved Oxygen (Use the table to convert ppm to \% saturation)		91-110\% Saturation 71-90\% Saturation 51-70\% Saturation <50\% Saturation	4 - Excellent		2	p	29	58
			3 - Good		4	0	31	61
			$2 \text { - Fair }$		6	0	32	64
			$1 \text { - Poor }$		8	0	34	68
pH (Use the pH paper to test your stream sample)		$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	$\begin{aligned} & 1 \text { - Poor } \\ & 1 \text { - Poor } \\ & 3 \text { - Good } \\ & 4 \text { - Excellent } \\ & 3 \text { - Good } \\ & 1 \text { - Poor } \\ & 1 \text { - Poor } \\ & \hline \end{aligned}$		10	0	35 37	71 74
					14	0	39	78
					16	0	41	81
					18	0	42	84
					20	0	44	88
					22	0	46	92
					24	0	48	95
Nitrate (Get from stream card)		5 ppm 20 ppm 40 ppm	2 - Fair		26	0	49	99
			1 - Poor		28	0	51	102
			1 - Poor		30	0	53	106
Phosphate (Get from stream card)		1 ppm 2 ppm 4 ppm	$\begin{array}{\|l} \hline 4 \text { - Excellent } \\ 3 \text { - Good } \\ 2 \text { - Fair } \\ \hline \end{array}$	Soil characteristics				
Turbidity (Get from stream card)		$\begin{aligned} & 0 \mathrm{JTU} \\ & >0 \text { to } 40 \mathrm{JTU} \\ & >40 \text { to } 100 \mathrm{JTU} \\ & >100 \mathrm{JTU} \end{aligned}$	$\begin{array}{\|l} \hline 4 \text { - Excellent } \\ 3 \text { - Good } \\ 2 \text { - Fair } \\ 1 \text { - Poor } \\ \hline \end{array}$	Tem $\mathrm{pH}:$	era	ure:		
Units Used ppm = parts per million JTU = Johnson Turbidity Units pH = parts Hydrogen \% Saturation = how much Oxygen is dissolved in the water				Tex Color	re:	ar:		

Directions

1. Use the macroinvertebrate key to identify and classify the species in your stream sample.
2. Mark off each type of species that was found in your sample. If there are one or more species for each order, add them together.
Example: If you identify two different types of mayflies, mark off "mayfly" on your sheet.
3. Multiply the number of species in each group by the index value (4, 3,2 , or 1)
4. Add the final four numbers and divide by the total number of species found in your sample to determine the Pollution Tolerance Index.

10-minute wildlife survey	
\# different species of...	\# of individuals of...
Amphibians	Amphibians
Fish	Fish
Mammals	Mammals
Aquatic plants	Aquatic plants
Birds	Birds
Insects	Insects
Reptiles	Reptiles
Land plants	Land plants
Total	Total
Biodiversity Index $=$ number of species/number of individuals A number closer to 1 means a high biodiversity index	

Add the index values of each group together and divide by the total number of species in the sample: \qquad
POLLUTION TOLERANCE INDEX $=$

